3. Категорический силлогизм
Категорический силлогизм (или просто: силлогизм) — это дедуктивное умозаключение, в котором из двух категорических высказываний выводится новое категорическое высказывание.
Логическая теория такого рода умозаключений называется силлогистикой. Она была создана ещё Аристотелем и долгое время служила образцом логической теории вообще.
В силлогистике выражения «Все … есть …», «Некоторые … есть …», «Все … не есть …» и «Некоторые … не есть…» рассматриваются как логические постоянные , т.е. берутся как единое целое. Это не высказывания, а определённые логические формы , из которых получаются высказывания путём подстановки вместо многоточий каких-то имён. Подставляемые имена называются терминами силлогизма.
Существенным является следующее традиционное ограничение: термины силлогизма не должны быть пустыми или отрицательными.
Примером силлогизма может быть:
Все жидкости упруги.
Вода — жидкость.
Вода упруга.
В каждом силлогизме должно быть три термина: меньший, больший и средний.
Меньшим термином называется субъект заключения (в примере таким термином является термин «вода»).
Большим термином именуется предикат заключения («упруга»). Термин, присутствующий в посылках, но отсутствующий в заключении, называется средним («жидкость»). Меньший термин обозначается обычно буквой S , больший — буквой Р и средний — буквой М. Посылка, в которую входит больший термин, называется большей. Посылка с меньшим термином называется меньшей. Большая посылка записывается первой, меньшая — второй. Логическая форма приведённого силлогизма такова:
Все М есть Р.
Все S есть М.
Все S есть Р.
В зависимости от положения среднего термина в посылках (является он субъектом или предикатом в большей и меньшей посылках) различаются четыре фигуры силлогизма. Схематически фигуры изображаются так:
По схеме первой фигуры построен силлогизм:
Все птицы (М) имеют крылья (Р).
Все страусы (S) — птицы (М).
Все страусы имеют крылья.
По схеме второй фигуры построен силлогизм:
Все рыбы (Р) дышат жабрами (М).
Киты (S) не дышат жабрами (М).
Все киты не рыбы.
По схеме третьей фигуры построен силлогизм:
Все бамбуки (М) цветут один раз в жизни (Р).
Все бамбуки (М) — многолетние растения (S).
Некоторые многолетние растения цветут один раз в жизни.
По схеме четвёртой фигуры построен силлогизм:
Все рыбы (Р) плавают (М).
Все плавающие (М) живут в воде (S).
Некоторые живущие в воде — рыбы.
Посылками и заключениями силлогизмов могут быть категорические суждения четырех видов: SaP, SiP, SeP и SoP.
Модусами силлогизма называются разновидности фигур, отличающиеся характером посылок и заключения.
Всего с точки зрения всевозможных сочетаний посылок и заключения в каждой фигуре насчитывается 64 модуса. В четырех фигурах 4 ? 64 = 256 модусов.
Силлогизмы, как и все дедуктивные умозаключения, делятся на правильные и неправильные . Задача логической теории силлогизма — систематизировать правильные силлогизмы, указать их отличительные черты.
Из всех возможных модусов силлогизма только 24 модуса являются правильными, по шесть в каждой фигуре. Вот традиционно принятые названия правильных модусов первых двух фигур:
1-я фигура: Barbara, Celarent, Darii, Ferio, Barbari, Celaront ;
2-я фигура: Cesare, Camestres, Festino, Baroco, Cesaro, Camestros.
В каждом из этих названий содержатся три гласных буквы. Они указывают, какие именно категорические высказывания используются в модусе в качестве его посылок и заключения. Так, название Celarent означает, что в этом модусе первой фигуры большей посылкой является общеотрицательное высказывание (SeP) , меньшей — общеутвердительное (SaP) и заключением — общеотрицательное высказывание (SeP).
Из 24 правильных модусов силлогизма 5 являются ослабленными : заключениями в них являются частноутвердительные или частноотрицательные высказывания, хотя в случае других модусов эти же посылки дают общеутвердительные или общеотрицательные заключения (ср. модусы Cesare и Cesaro второй фигуры). Если отбросить ослабленные модусы, остаётся 19 правильных модусов силлогизма.
Для оценки правильности силлогизма могут использоваться круги Эйлера, иллюстрирующие отношения между объёмами имён.
Возьмём, для примера, силлогизм:
Все металлы (М) ковки (Р).
Железо (S) — металл (М).
Железо (S) ковко (Р).
Отношения между тремя терминами этого силлогизма (модус Barbara) представляются тремя концентрическими кругами. Эта схема интерпретируется так: если все М (металлы) входят в объём Р (ковких тел), то с необходимостью S (железо) войдёт в объём Р (ковких тел), что и утверждается в заключении «Железо ковко».
Другой пример силлогизма:
Все рыбы (Р) не имеют перьев (М).
У всех птиц (S) есть перья (М).
Ни одна птица (S) не является рыбой (Р).
Отношения между терминами данного силлогизма (модус Cesare) представлены на рисунке. Он истолковывается так: если все S (птицы) входят в объём М (имеющие перья), а М не имеет ничего общего с Р (рыбы), то у S (птицы) нет ничего общего с Р (рыбы), что и утверждается в заключении.
Пример неправильного силлогизма:
Все тигры (М) — млекопитающие (Р).
Все тигры (М) — хищники (S).
Все хищники (S) — млекопитающие (Р).
Отношения между терминами данного силлогизма могут быть представлены двояко, как это показано на рисунке. И в первом, и во втором случаях все М (тигры) входят в объём Р (млекопитающие) и все М входят также в объём S (хищники). Это соответствует информации, содержащейся в двух посылках силлогизма. Но отношение между объёмами Р и S может быть двояким. Охватывая М , объём S может полностью входить в объём Р или объём S может лишь пересекаться с объёмом Р. В первом случае можно было бы сделать общее заключение «Все хищники — млекопитающие», но во втором случае правомерно только частное заключение «Некоторые хищники — млекопитающие». Информации, позволяющей сделать выбор между этими двумя вариантами, в посылках не содержится. Значит, мы не вправе делать общее заключение. Силлогизм не является правильным.
В силлогизме, как и во всяком дедуктивном умозаключении, в заключении не может содержаться информация, отсутствующая в посылках. Заключение только развёртывает информацию посылок, но не может привносить новую информацию, отсутствующую в них.
В обычных рассуждениях нередки силлогизмы, в которых не выражается явно одна из посылок или заключение. Такие силлогизмы называются энтимемами. Примеры энтимем: «Щедрость заслуживает похвалы, как и всякая добродетель», «Он — учёный, поэтому любопытство ему не чуждо», «Керосин — жидкость, поэтому он передаёт давление во все стороны равномерно» и т.п. В первом случае опущена меньшая посылка «Щедрость — это добродетель», во втором — большая посылка «Всякому учёному не чуждо любопытство», в третьем — опять-таки большая посылка «Всякая жидкость передаёт давление во все стороны равномерно».
Для оценки правильности рассуждения в энтимеме следует восстановить её в полный силлогизм.